CH # 13 RECTILINEAR PROPAGATION OF LIGHT

Some important formulae:

i)
$$\frac{1}{f} = \frac{1}{P} + \frac{1}{q}$$
 ii) $M = \frac{q}{P} = \frac{hi}{ho}$ iii) $f = \frac{R}{2}$

<u>Nature of image:</u> If 'q' is +ve image will be REAL. If 'q' is –ve image will be VIRTUAL.

Nature of mirror:

If 'f' is +ve given mirror is CONCAVE. If 'f' is -ve given mirror is CONVEX.

13.1: An object is placed at a distance of 30cm from a concave mirror of focal length 5cm. If the object is 5cm is high, find the position and size of image.

GIVEN:

Object distance = P = 30cmFocal length = f = 5cm Size of object = $h_0 = 5cm$

REQUIRED:

Position of image = q = ? Size of image = hi = ?

SOLUTION:

By using mirror formula,

 $\frac{1}{f} = \frac{1}{P} + \frac{1}{q}$ $\frac{1}{5} = \frac{1}{30} + \frac{1}{q}$ $\frac{1}{5} - \frac{1}{30} = \frac{1}{q}$ $\frac{1}{q} = \frac{6-1}{30}$ $\frac{1}{q} = \frac{5}{30}$ $\frac{1}{q} = \frac{1}{6}$ q = 6 cm

We know that,

 $\frac{\text{hi}}{\text{ho}} = \frac{\text{q}}{\text{P}}$ $\frac{\text{hi}}{5} = \frac{6}{30}$

 $hi = \frac{6}{30} \times 5$ hi = 1cm

13.2: If an object is placed at a distance of 10cm from a spherical mirror and its virtual image is formed at a distance of 5cm from the mirror. Find the focal length and the nature of mirror.

GIVEN: Object distance = P = 10cm Image distance = q = -5cm (Virtual image)

REQUIRED: Focal length = f = ?

SOLUTION: By using mirror formula, $\frac{1}{f} = \frac{1}{P} + \frac{1}{q}$ $\frac{1}{f} = \frac{1}{10} + \frac{1}{(-5)}$ $\frac{1}{f} = \frac{1}{10} + \frac{1}{5}$

10

f

f = -10cm since f is -ve therefore given mirror is CONVEX MIRROR

13.3: An object is situated at a distance of 20cm from a concave mirror. Find the nature and the position of the image if the focal length of the mirror is 15cm.

GIVEN: Object distance = P = 20cm Focal length = f = 15cm

REQUIRED: Image distance = q = ? Nature of image = ?

SOLUTION:

By using mirror formula,

$$\frac{\frac{1}{f} = \frac{1}{P} + \frac{1}{q}}{\frac{1}{15} = \frac{1}{20} + \frac{1}{q}}$$
$$\frac{\frac{1}{15} - \frac{1}{20} = \frac{1}{q}}{\frac{1}{15} - \frac{1}{20} = \frac{1}{q}}$$
$$\frac{\frac{1}{q} = \frac{4 - 3}{60}}{\frac{1}{q} = \frac{1}{60}}$$

q = 60cm 'q' is positive therefore image is real. Position of image is 60cm from the mirror.

13.4: An object is situated at a distance of 24.0cm from a concave mirror. The focal length of concave mirror is 6cm. Determine the size of the image and its distance from the mirror if the object is 12cm high.

GIVEN:

Object distance = P = 24cmFocal length = f = 6cm Size of object = $h_o = 12cm$

REQUIRED:

Image distance = q = ? Size of image = hi = ?

SOLUTION:

By using mirror formula,

$\frac{1}{f} = \frac{1}{f}$	$\frac{1}{P}$ + $\frac{1}{24}$ +	1 q 1
$\frac{1}{6}$ -	$\frac{1}{24}$	$q = \frac{1}{q}$
$\frac{1}{a} =$	$\frac{4}{24}$	q 1
$\frac{1}{a} =$	$\frac{3}{24}$	
$\frac{1}{q} =$	$\frac{1}{8}$	
q = 8	Scm	

We know that,

 $\frac{\text{hi}}{\text{ho}} = \frac{q}{P}$

 $\frac{\text{hi}}{12} = \frac{8}{24}$ hi = $\frac{8}{24} \times 12$ hi = 4cm

13.5: The focal length of concave mirror is 40cm. Where an object should be placed so as to gets its real image magnified twice.

GIVEN: Focal length = f = 10cm Magnification = M = 2

REQUIRED: Object distance = P = ?

SOLUTION: Magnification = $M = \frac{q}{p}$ $M = \frac{q}{p}$ $2 = \frac{q}{p}$ 2P = qBy using mirror formula $\frac{1}{f} = \frac{1}{p} + \frac{1}{2k}$

 $\frac{1}{10} = \frac{3}{2P}$ $2P = 3 \times 10$ 2P = 30 $P = \frac{30}{2}$ P = 15 cm

13.6: The radius of curvature of concave mirror is40cm. where should an object be placed as to gets its real image magnified four times.

GIVEN: Radius of curvature = R = 40cm Magnification = M = 4

REQUIRED:

Object distance = P = ?

SOLUTION:

 $f = \frac{R}{2}$ $f = \frac{40}{2}$ f = 20 cm $Magnification = M = \frac{q}{P}$ $M = \frac{q}{P}$ $4 = \frac{q}{P}$ 4P = q

By using mirror formula,

 $\frac{1}{20} = \frac{1}{P} + \frac{1}{4P}$ $\frac{1}{20} = \frac{4+1}{4P}$

 $\frac{1}{20} = \frac{5}{4P}$ $4P = 5 \times 20$ 4P = 100 $P = \frac{100}{4}$ P = 25 cm

13.7: An object is situated at a distance of 20cm convex mirror of radius of curvature 20cm Find to position and the nature of image

GIVEN:

Object distance = P = 20cm Radius of curvature = R = 20c

REQUIRED: Image distance = q = ? Nature of image = ?

SOLUTION:

 $f = \frac{R}{2}$ $f = \frac{20}{2}$ f = 10cm

f = -10cm (Since mirror is convex)

By using mirror formula,

$$\frac{1}{f} = \frac{1}{P} + \frac{1}{q}$$
$$-\frac{1}{10} = \frac{1}{20} + \frac{1}{q}$$
$$-\frac{1}{10} - \frac{1}{20} = \frac{1}{q}$$
$$\frac{1}{q} = \frac{-2 - 1}{20}$$
$$\frac{1}{q} = -\frac{3}{20}$$
$$q = -\frac{20}{3}$$

q = -6.67 cm q is negative therefore nature of image is VIRTUAL

13.8: Focal length of concave mirror is 10cm, if the object is situated at a distance of (i) 60cm (ii) 20cm (iii) 5cm from the mirror, find the distance of image in each case.

GIVEN: Focal lengths from i) P = potro i) P = com ii P = com

mage distance in each case = q = ?

SOLUTION:

By using mirror formula,

<u> </u>	1	1
$i) - \frac{1}{f}$	$= \frac{1}{P}$	+ -
1	1	Y 1
1_	_ 1	, I
10	60	r q
1	1	1
10 -	$-\frac{1}{\sqrt{2}}$	= _
10	60	q
1	6 – 1	
_ =	60	-
Ч	00	
1	5	
-=	60	
q	60	
1	1	
_ =	12	
q	12	
q = 1	.2 cm	

ii) $\frac{1}{f} = \frac{1}{P} + \frac{1}{q}$ $\frac{1}{10} = \frac{1}{20} + \frac{1}{q}$ $\frac{1}{10} - \frac{1}{20} = \frac{1}{q}$ $\frac{1}{q} = \frac{2-1}{20}$ $\frac{1}{q} = \frac{1}{20}$ q = 20 cm

iii) $\frac{1}{f} = \frac{1}{P} + \frac{1}{q}$ $\frac{1}{10} = \frac{1}{5} + \frac{1}{q}$ $\frac{1}{10} - \frac{1}{5} = \frac{1}{q}$ $\frac{1}{q} = \frac{1-2}{10}$ $\frac{1}{q} = -\frac{1}{10}$ q = -10 cm